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‘NATIONAT, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3521

A COMPARISON OF THE MEASURED AND PREDICTED LATERAL
OSCILLATORY CHARACTERISTICS OF A 35°
SWEPT-WING FIGHTER ATRPLANE!

By Walter E, McNeill and George E. Cooper
SUMMARY

Results of tests of a 350 swept-wing fighter airplane, during which
lateral oscillations were performed over a Mach number range from 0.4l to
0.79 at a pressure altitude of 10,000 feet and from 0.49 to 1.0k at 35,000
feet, are presented in this report. Experimental and computed values for
the period of the lateral oscillation and time required to damp to half
amplitude are shown. One sample oscillation time history is included for
each test altitude. '

The airplane was found to be laterally stable, statically and dynami-
cally, throughout the range of speeds tested. At both altitudes, the
variation with Mach number of the period of the lateral oscillation was
satisfactorily predicted from available and estimated aerodynamic and mass
parameters. The time required to damp to half amplitude, as measured from
flight at both altitudes, varied with Mach number in essentially the same
manner as predicted from computations. The measured damping was somewhat
better than that obtained from computations for the altitude of 35,000
feet, particularly at a Mach number of 0.92. An increase in time to damp
to half amplitude was noted between Mach numbers of 0.95 and 1.0k,

INTRODUCTION

As part of a general research program concerned with the lateral
dynamic stability and handling characteristics of high-speed, high-altitude
airplanes, the Ames Aeronautical Laboratory of the NACA has tested a 359
swept-wing fighter airplane through a wide range of flight speeds and
altitudes.

The purpose of this report’is to present results of tests of the
lateral oscillatory characteristics made during a series of four flights.
Comparisons are included of the computed variation of period and damping
of the lateral osecillation with the measured values. These comparisons

lSupersedes recently declassified NACA RM A51C28 by Walter E. McNeill
and George E. Cooper.
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indicate the accuracy with which the oscillatory behavior of an airplane
can be predicted under various flight conditions using available or esti-
mated mass parameters and stability derlvatlves, and neglectlng such
effects as aeroelasticity and unsteady lift.

SYMBOLS
C;,  1ift coefficient, lzgt
acr,
CLa, _3-;’ per deg
Cy lateral-force coefficient, laterfisforce
A0y , : ' ‘
CYB —BE-, per radian ’
o BCY at ©
Y. , per radian
P pb
aQV
oCy
CYr 5 per radian
a2V
C, rolling-moment coefficient, rolllr;ngmoment
c oc, 2t
1 -—, per radian
B o
CZP BCé, per radian
oV
3¢,
Clr o Per radian
v
Cn yawing-moment coefficient, Xavungsxéloment
3¢, | .
CnB TB-’ per radian , -
Cn ,
Cnp pb’ per radian , -
2V
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Cnyp

Ix

Iy

Zv.r

ao

C
4§, ber radian
OBV
moment of inertia about flight-path axis, slug-ft2

moment of inertia about axis normal to flight path in the plane
of symmetry, slug-ft2

Mach number

period of oseillation, sec

wing area, sq ft

time to damp to half amplitude, sec

true airspeed, ft/sec

weight of airplane, 1b

wing span,.fﬁ

pressure altitude, £t

distance parallel to longitudinal reference axis from center of
gravity of the airplane to center of pressure of vertical tail
in yaw, ft '

rolling angular velocity, radians/sec

dynamic pressure, 1lb/sq ft

yawing angular velocity, radians/sec

normal distance from longitudinal reference axis to center of
pressure of vertical tail in yaw, It

angle of attack of longitudinal reference axis, deg

angle of attack of longitudinal reference axis for zero 1ift, deg
angle of sideslip, radians

dihedral angle, radians

angle between longitudinal reférence axis and principal axis of

airplane, positive when reference axis is above principal axis
at nose, deg




I . NACA TN 3521

g sidewash angle at vertical tail resulting from the wing in rolling
flow, positive for positive lateral force, radians

L} angle of bank, radians
lgl ratio of amplitude of angle of bank to amplitude of sideslip angle
I | for the oscillatory mode
Subscripts
h contributed by horizontal tail .
i+f contributed by fuselage and wing-fuselage interference
M pertaining to a given Mach number
v contributed by vertical tail
W contributed by wing

W.T. obtained from wind-tunnel tests.
INSTRUMENTATION AND FLIGHT TECHNIQUE

The general arrangement of the test airplane is shown by a photograph
(fig. 1) and a two-view drawing (fig. 2). The principal dimensions are
listed in table I.

Standard NACA recording instruments were used to measure angle of
sideslip, rolling and yawing velocities, pressure altitude, and airspeed.
Aileron and rudder deflections were recorded by NACA instruments as well
as on separate channels of a 36-channel oscillograph. The rudder deflec-
tion was known to an accuracy of 0.1°, while the aileron deflection was
known within 0.3°. The nose-boom airspeed system described in reference 1
was used to determine Mach number and the static and dynamic pressure. The
records were synchronized by a 1/10-second instrument timer. ‘

At a pressure altitude of 10,000 feet, lateral oscillation maneuvers
were performed through a range of Mach numbers from 0.41 to 0.79. At an
altitude of 35,000 feet, oscillations were performed at Mach numbers from
0.49 to 1.04,

All oscillations performed at 10,000 feet were excited by returns
from steady sideslips. At 35,000 feet, the alrplane was disturbed both
by returns from steady sideslips and by abruptly deflecting the rudder
and returning it to neutral, except at Mach numbers above 1.02, where
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rudder kicks alone were used. During all test runs below a Mach number

of 1.0, the rudder and ailerons were held essentially fixed following
their return to trim positions with the aid of chains which prevented the
pilott's moving his controls beyond a predetermined point. At Mach numbers
above 1,0, chains were used on the rudder pedals only.

All oscillations were performed in the clean condition and in level
flight, with the exception of those at Mach numbers above 0.92 where dive
angles up to 360 were required.

RESULTS AND DISCUSSION

Typical time histories of indicated airspeed, pressure altitude, side-
slip angle, rolling velocity, yawing velocity, total aileron deflection,
and rudder deflection are shown in figure 3 for a Mach number of 0.79 at
a pressure altitude of 10,000 feet. Figure k4 presents time histories of
the same quantities for an average Mach number of 1.04 at about 35,000
feet,

The results of data obtained during similar lateral oscillations at
altitudes of 10,000 and 35,000 feet are summarized in figure 5 in the form
of period and time required to damp to half amplitude expressed as func-
tions of Mach number. '

For comparison with the experimental results, curves of computed
values for period and damping also are shown in figure 5. These values
are solutions to stability quartics derived from the lateral equations of
motion presented in reference 2. The mass distribution and dimensional
data used in computing period and damping were furnished by the manufac-
turer. The methods used to measure or estimate the variation of the sta-
bility derivatives with Mach number and 1ift coefficient are summarized
in the appendix. All lateral derivatives were corrected for compressi-
bility effects according to the Prandtl-Glauert rule, as outlined in the
appendix, from M = O to M = 0.9. Each derivative was then plotted as a
function of Mach number and the resulting curve was extrapolated at a con-
stant slope from M = 0.9 to M = 1,0. Table II presents the values of the
parameters used in computing period and damping at each Mach number con-
sidered at altitudes of 10,000 and 35,000 feet, together with the resulting

values of P, Ty,2, and l%L. The 1ift coefficients shown in table II are

representative of the flight values except for Mach numbers greater than
0.95, where a deviation of less than 15 percent would be expected. Because
of the small range of angle of attack involved (less than 5°), the rolling
and yawing moments of inertia were assumed constant at the values given
beneath table IT.

Figure 5 indicates that reasonably close correspondence (within 8
percent) was obtained between the variation with Mach number of computed
and measured values of period at pressure altitudes of 10,000 and 35,000
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feet. The measured period is observed to decrease less rapidly with
increasing Mach number than did the computed value at 35,000 feet. At
10,000 feet the opposite trend is seen; that is, the experimental value
of the period decreased slightly more rapidly than did the computed value
as Mach number was increased. No explanation for this phenomenon is
apparent.

Close agreement (within 7 percent) existed between the measured and
computed values for T,,p at Mach numbers below 0.6 at 10,000 féet. Above
M = 0.6 the flight-test values for Ti;o became increasingly higher than
the computed values as the Mach number was increased. At 35,000 feet the
measured values for T,,- were somewhat lower than the computed values
throughout the major portion of the Mach number range tested (0.49 to
l.Oh), with the best agreement occurring at low speed. Above M = 0.8 the
experimental value of Ti,p decreased more rapidly, reaching a maximum
deviation of about 20 percent from the computed curve at M = 0.92, then
changed its slope gradually from negative to positive up to M = 1.0k,

Due to the scatter of test points at Mach numbers above 1.0, it is diffi-
cult to determine more than the general trend indicated in figure 5.

It is evident that a good prediction was made of the lateral period
and damping of the test airplane for the range of lift coefficients con-
sidered in the computations (0.076 to 0.412) using Cnp and Clp for the
wing alone, as shown by the dashed curves in figure 5. In this instance,
nothing was gained by considering the contributions of the vertical tail
in addition to the wing, as shown by the low and high Mach number points
for which an and Clp were computed by the methods of reference 3. As

the 1lift coefficient of the airplane is increased, however, the vertical-
tail contribution to Cp, becomes quite large and could be included as
shown in the appendix.

Figure 6 presents the above flight information as the relationship
between period and time to damp to half amplitude for each altitude,
together with the corresponding computed values. Good agreement between
the measured and computed period-damping relationships is again demon~-
strated by this method of presentation, particularly for the altitude of
10,000 feet below a Mach number of 0.6. As in figure 5, figure 6 shows a
lower experimental value of T,;/2 for 35,000 feet at all Mach numbers,
particularly at M = 0.9, in relation to the computed values.

The Armed Services lateral-oscillation specification which applied at
the time of these tests (ref. 4) is shown in figure 6 for comparison with
the characteristics of the test airplane. It is shown that the lateral
oscillatory characteristics of the test airplane at 35,000 feet were
entirely within the unsatisfactory region defined in reference 4. The
same figure shows that the airplane, at 10,000 feet, exhibited borderline
characteristics with respect to the requirements of reference 4 except at
Mach numbers between 0.54 and 0.79 where the period-damping relationships
were in the satisfactory region. The computations indicate that for low
Mach numbers, near 0.35, characteristics exist which are satisfactory under
the requirements of reference k.
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According to the pilot's comments, the lateral oscillatory charac-
teristics of the test airplane were generally satisfactory at 10,000 feet.
At 35,000 feet, the oscillations were somewhat objectionable, partly
because of the increased rolling that was present (see table III) and
partly because of the noticeably decreased damping which was especially
apparent in rough air. Rough air tended to prolong the oscillations at
10,000 feet as well but, since there was considerably less rolling present
at comparable Mach numbers, the motions were not considered so objection-
able as those experienced at the higher altitude.

Results of other lateral flying qualities investigations ccnducted
at the Ames Aeronautical Laboratory (see ref. 5) have indicated the pos-
sibility of the use of the ratio of amplitude of angle of bank to amplitude

of sideslip angle for the oscillatory mode _%T as a criterion for satis-

factory lateral oscillatory characteristics Lf fighter-type airplanes.

Measured values of l%" are presented, in addition to period and

time to damp to half amplitude, in table III for the Mach number ranges
covered at the test altitudes of 10,000 and 35,000 feet.

Computed values of 19— are shown in table II for Mach numbers con-

sidered at 10,000 and 35,000 feet. Through the speed ranges covered at

both altitudes, PL for the test airplane was predicted with less accu-

racy than were period and damping.
CONCLUSIONS

1. In general, the lateral oscillatory characteristics of the test
airplane were closely predicted from information based on wind-tunnel
tests, although unsteady lift and aeroelastic effects were neglected.

. 2. Throughout the range of Mach numbers tested (0.41 to 1.04) the
airplane was laterally stable both statically and dynamically. '

3. The period of the lateral oscillation varied smoothly with Mach
number over the range tested and was adequately represented by computed
values at both test altitudes, with no error greater than 8 percent.

4. The time required for the lateral oscillation to damp to half
amplitude at test altitudes of 10,000 and 35,000 feet decreased with Mach
number in essentially the same manner as indicated by computations, except:
at 35,000 feet where the measured value of T,;,, began to increase with
Mach number above M = 0.95. :

Ames Aeronautical Laboratory
National Advisory Committee for Aercnautics
Moffett Field, Calif., Mar. 28, 1951
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APPENDIX

ESTIMATTION OF LATERAL-STABILITY DERIVATIVES

FOR THE TEST AIRPLANE

The values presented in table II for the lift-curve slope, angle of
attack at zero lift, and the static lateral-stability derivatives were
obtained from wind-tunnel or other force-test methods and corrected for
compressibility effects where tests did not cover the Mach number range
considered in this report. The rotary derivatives were estimated by pub-
lished theoretical methods applicable to swept wings.

The procedures used in determination of the aerodynamic parameters
and stablllty derivatives considered in this report are presented below.

Longitudinal Trim Parameters

Variation of lift-curve slope,‘CLm, with Mach number was determined

from the results of subsonic tests in the Ames 16-foot wind tunnel and the
Southern California Cooperative Wind Tunnel to a Mach number of 0.94% and
supplemented by transonic bump tests to a Mach number of 1.06.

Angle of attack for zero 1lift, oy, was taken from unpublished results
of NACA wing-flow tests.

Static Lateral-Stability Derivatives

Lateral force due to sideslip.- The coefficient of lateral force due
to sideslip, Cy_, was obtained from wind-tunnel data taken at M = 0.16

for a 0.20-scale model of the test airplane, both complete and with tail
removed. Changes in Cy = due to increasing Mach number were computed by

applying equation (1) of reference 6 to the contribution of the vertical
tail assuming that the tail-off value did not vary with Mach number.

Yawing moment due to sideslip.- The coefficient of yawing moment due
to sideslip, Cp,, was obtained from wind-tunnel data taken at M = 0.16
and corrected for higher Mach numbers in a manner identical with that used
for CYB.

Rolling moment due to sideslip.- The coefficient of rolling moment
due to sideslip, Ciy, was determined from wind-tunnel data obtained at
M = 0.16 at angles of attack of 0° and 8° for the complete 0.20-scale
model, the model with tail removed, and the wing alone.




NACA TN 3521 9

The wing contribution to ClB was broken down into two parts as
follows:

iy

BCZBW > .
<C ) I\ e Cag,, >CL .
B aczﬁw> oCL, M=0.16

BCL M:O W.T-

— — reference 6 .
or M BCZBW >I‘

( Cig,, )M or M=0.16
51" =0 W.T-

L _ (A1)

reference T

At Cp, = O, the dihedral effect of the wing was assumed to be due
entirely to the geometric dihedral angle, reducing the first term of equa-
tion (Al) to zero. The second term of equation (Al) was then assumed
constant with Cp at a given Mach number, enabling the first term to be
evaluated at 1lift coefficients greater than zero. The compressibility
corrections indicated in equation (A1) were applied assuming that test
results obtained at M = 0.16 were essentially those at M = 0.

The contribution of the vertical tail to Cj, was determined from

the tail-on and tail-off data at angles of attack of 0° and 8° and cor-
rected for higher Mach numbers using the method applied to the tail contri-

bution to CYB.

The increment of Cj due to interference and the fuselage was

obtained from wind-tunnel tests of the wing alone and the wing-fuselage
combination at both 0° and 8° angles of attack and was assumed constant

with Mach number.

For the entire airplane, CZB was determined in the following manner:

CZB = (CZB)W + (CZB)V + (CZB)i+f | (A2)
Rotary Derivatives

Rolling moment due to rolling.- The rolling-moment coefficient due to
rolling velocity, C; , was determined as a function of Mach number for the

wing alone by application of figure 5 of reference 7.
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The contribution of the horizontal tail was determined by the method
applied to the wing. To express the values of C3 for the horizontal

tail in terms of wing area, span, and wing-tip helix angle, the values
obtained from figure 5 of reference T were corrected by the following
method:

Spbp2 :
Crp)h = 225 | (e (43)
p’h Sb? ph reference 7

The contribution of the vertical tail was determined by the method

dg

pb

S5y
equal to 0.248, obtained from unpublished results of a theoretical investi-
gation and tests conducted in the Langley stability tunnel.

presented in reference 3, using a value of sidewash parameter <

The contributions of the wing, horizontal tail, and vertical tail were
added algebraically to obtain the estimated values of CZP for the test

airplane at different Mach numbers and 1lift coefficients:
Cip = (Ciply + (Ciply + (Cip)y (ak)

Yawing moment dvue to rolling.- The yawing-moment coefficient due to
rolling velocity, Cnp, was determined as a function of lift coefficient
according to equation (31) and figure 25 of reference 8 for the wing alone.
The variation thus obtained was corrected for compressibility effects by
application of equation (3) of reference 6.

The contribution of the vertical tail was determined by the method
presented in reference 3 and added algebraically to the wing contribution
to obtain Cnp for the entire airplane:

Cnp = (Cnp)y + (Cnp)y (45)

In the discussion it was noted that use of Czp and Cnp for the wing

alone in the computations gave adequate agreement with experimental -period
and damping.

Rolling moment due to yawing.- The variation of rolling-moment coef-
ficient due to yawing velocity, Cip» with lift coefficient was determined
from figure 26 and equation (37) of reference 8 for the wing alone. Cor-
rections for compressibility effects were applied by means of equation (15)
of reference 6. '

The increment of Cj,. due to the vertical tail was found by means of
the following expression: '

21
(C1p)y = - = (v - lyypsin a)(Cyg), (46)
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For the airplane, Ci, 1is given as:
Cip = (C1z), + (Cip), | (A7)

Yawing moment due to yawing.- The yawing-moment coefficient due to
yawing velocity, Cn,, was determined for the wing alone as a function of
1ift coefficient from figures 14 and 27 and equation (41) of reference 8.

The contribution of the vertical tail was computed as a function of
Mach number from the following relation:

(Cnp), = 2 - (CYB)V (48)

For each 1lift coefficient and Mach number considered, the estimated
value of Cp, for the airplane is given as:

Cny = (Cnp), + (Cnp)y (A9)

The center of pressure of the vertical tail used to determine - zv,
was obtained from figure 5 of reference 9, using the aspect ratio, taper
ratio, and sweep angle of the vertical tail, the root of which was assumed
to lie on the fuselage reference axis. The center of pressure was assumed
to lie on the quarter-chord line.

The lateral-force coefficients due to rolling and yawing velocities,
CYP and Cy,., were found to have little effect on the computed lateral
motion of the test airplane. Therefore, those derivatives were assumed
to be equal to zero in this analysis.
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TABLE I.- DIMENSIONS

OF TEST

ATRPLANE

13

Wing
Area . . . . .
Span . . . . .
Aspect ratio .
Taper ratio .

Horizontal Tail
Area . + ¢ & «
Span « « ¢ o o
Aspect ratio .
Taper ratio .

Area . . . . .
Span « « ¢ . &
Aspect ratio .
Taper ratio .

.

Dihedral . o + .« .
Sweepback of 0,.25«chord line
Root airfoil section (normal

Sweepback of 0.25-ch
Airfoil section (parallel to
| Vertical Tail

Sweepback of 0.25~ch

ord line

* -
line

to 0.2

5~chord

e o o o
e o o s
e o o o
‘e e e .

center line)

® o o s @

line) . .

Tip airfoil section (normal to 0.25-chord line) . .

287.9 sq ft
37.12 ft
4,785

0.513

30

350141

NACA 0012-6L
(modified)
NACA 0011-6k4
(modified)

35.0 sq ft
12.75 ft
4,65

0.450

34035¢

NACA 0010-6L

39.75 sq Tt
8.38 ft
1.77

0.345

359

ord
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TABLE III.- AVERAGE VAILUES OF THE MEASURED LATERAL OSCILLATORY CHARACTER-
ISTICS OF TEST AIRPLANE AT VARIOUS MACH NUMBERS FOR ALTITUDES OF 10,000

AND 35,000 FEET

| o]

hy . M P T ikal
2] 1/ 2 IBI
0.4k0 | 2,14 | 2.05 | 1.95

501 1.70 | 1.60 { 1.70

10,000 60 1.38 ] 1.35 1 1.k49
701 1.15 | 1.27 | 1.30

79 ] 1.00 | 1.21 | 1.15

50 | 2.55 | k1o | 2.48

60| 2.23 | 3.50 ] 2.07

S0 1.95 | 2,921 1.01

35,000 80 | 1.70 | 2.4k} 1.77
90 | 1.50 | 1.85 | 1.6k

1.00 | 1.34 | 1.76 | 1.52

1.0k | 1.27 | 2,00 | 1.48
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37/0'— .

' Figure 2.~ Two-view drawing of the test airplane.
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Figure 4%.- Time histories of measured quantities during lateral oscil-
lation; Mach number, 1.0L; pressure altitude, 35,000 feet.
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